Online Multiple Kernel Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost Sensitive Online Multiple Kernel Classification

Learning from data streams has been an important open research problem in the era of big data analytics. This paper investigates supervised machine learning techniques for mining data streams with application to online anomaly detection. Unlike conventional machine learning tasks, machine learning from data streams for online anomaly detection has several challenges: (i) data arriving sequentia...

متن کامل

Large Scale Online Kernel Classification

In this work, we present a new framework for large scale online kernel classification, making kernel methods efficient and scalable for large-scale online learning tasks. Unlike the regular budget kernel online learning scheme that usually uses different strategies to bound the number of support vectors, our framework explores a functional approximation approach to approximating a kernel functi...

متن کامل

Budget Online Multiple Kernel Learning

Online learning with multiple kernels has gained increasing interests in recent years and found many applications. For classification tasks, Online Multiple Kernel Classification (OMKC), which learns a kernel based classifier by seeking the optimal linear combination of a pool of single kernel classifiers in an online fashion, achieves superior accuracy and enjoys great flexibility compared wit...

متن کامل

Online Multiple Kernel Learning for Structured Prediction

Despite the recent progress towards efficient multiple kernel learning (MKL), the structured output case remains an open research front. Current approaches involve repeatedly solving a batch learning problem, which makes them inadequate for large scale scenarios. We propose a new family of online proximal algorithms for MKL (as well as for group-LASSO and variants thereof), which overcomes that...

متن کامل

Online Bayesian Multiple Kernel Bipartite Ranking

Bipartite ranking aims to maximize the area under the ROC curve (AUC) of a decision function. To tackle this problem when the data appears sequentially, existing online AUC maximization methods focus on seeking a point estimate of the decision function in a linear or predefined single kernel space, and cannot learn effective kernels automatically from the streaming data. In this paper, we first...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2012

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-012-5319-2